Dostosuj preferencje dotyczące zgody

Używamy plików cookie, aby pomóc użytkownikom w sprawnej nawigacji i wykonywaniu określonych funkcji. Szczegółowe informacje na temat wszystkich plików cookie odpowiadających poszczególnym kategoriom zgody znajdują się poniżej.

Pliki cookie sklasyfikowane jako „niezbędne” są przechowywane w przeglądarce użytkownika, ponieważ są niezbędne do włączenia podstawowych funkcji witryny.... 

Zawsze aktywne

Niezbędne pliki cookie mają kluczowe znaczenie dla podstawowych funkcji witryny i witryna nie będzie działać w zamierzony sposób bez nich.Te pliki cookie nie przechowują żadnych danych umożliwiających identyfikację osoby.

Brak plików cookie do wyświetlenia.

Funkcjonalne pliki cookie pomagają wykonywać pewne funkcje, takie jak udostępnianie zawartości witryny na platformach mediów społecznościowych, zbieranie informacji zwrotnych i inne funkcje stron trzecich.

Brak plików cookie do wyświetlenia.

Analityczne pliki cookie służą do zrozumienia, w jaki sposób użytkownicy wchodzą w interakcję z witryną. Te pliki cookie pomagają dostarczać informacje o metrykach liczby odwiedzających, współczynniku odrzuceń, źródle ruchu itp.

Brak plików cookie do wyświetlenia.

Wydajnościowe pliki cookie służą do zrozumienia i analizy kluczowych wskaźników wydajności witryny, co pomaga zapewnić lepsze wrażenia użytkownika dla odwiedzających.

Brak plików cookie do wyświetlenia.

Reklamowe pliki cookie służą do dostarczania użytkownikom spersonalizowanych reklam w oparciu o strony, które odwiedzili wcześniej, oraz do analizowania skuteczności kampanii reklamowej.

Brak plików cookie do wyświetlenia.

Coraz więcej instytucji finansowych wykorzystuje sztuczną inteligencję w projektach z zakresu przeciwdziałania praniu pieniędzy, wynika z najnowszego badania SAS.

Jak wynika z najnowszego badania SAS, ponad połowa instytucji finansowych wykorzystuje sztuczną inteligencję w projektach z zakresu przeciwdziałania praniu pieniędzy lub planuje to zrobić w niedalekiej przyszłości. 1/3 organizacji z sektora finansów potwierdziło, że pandemia COVID-19 miała wpływ na przyspieszenie wdrożenia sztucznej inteligencji (AI) i uczenia maszynowego (ML) na potrzeby przeciwdziałania praniu pieniędzy (AML). Jednocześnie 39 proc. specjalistów ds. zgodności przyznaje, że projekty z tego zakresu, mimo zakłóceń spowodowanych pandemią, nie uległy spowolnieniu.

 

Raport „Acceleration Through Adversity: The State of AI and Machine Learning Adoption in Anti-Money Laundering Compliance” prezentuje wyniki badania przeprowadzonego wśród 850 członków Association of Certified Anti-Money Laundering Specialists (ACAMS), największej międzynarodowej organizacji zajmującej się rozwojem kompetencji specjalistów z zakresu wykrywania i zapobiegania przestępstwom finansowym. ACAMS przeprowadziło wśród nich ankietę na temat wykorzystania technologii w ich organizacjach do wykrywania przypadków prania pieniędzy. Szacuje się, że proceder ten stanowi 2-5 proc. globalnego produktu krajowego brutto, czyli od 800 miliardów do 2 bilionów USD rocznie. Wnioski z badania i poszczególne wartości procentowe zaprezentowano na portalu.

 

Rola sztucznej inteligencji w zwalczaniu prania pieniędzy staje się kluczowa. Ponad połowa respondentów (57 proc.) już wdrożyła AI/ML w procesy AML, pilotuje rozwiązania z tego zakresu lub planuje wdrożyć je w najbliższych 12-18 miesiącach.

 

Podmioty regulacyjne na całym świecie coraz częściej oceniają działania instytucji finansowych w obszarze compliance na podstawie wiarygodności informacji przekazywanych organom ścigania. Nie dziwi zatem fakt, że 66 proc. respondentów uważa, że organizacje sprawujące nadzór oczekują od nich wykorzystania sztucznej inteligencji i uczenia maszynowego – mówi Kieran Beer, Chief Analyst and Director of Editorial Content w ACAMS.

 

Wiele podmiotów z branży finansowej coraz sprawniej wdraża zaawansowane technologie analityczne, które pomagają im w identyfikowaniu przestępców. Prym we wdrażaniu nowych technologii wiodą nie tylko największe instytucje finansowe. Już 28 proc. dużych firm z tego sektora, które posiadają kapitał większy niż 1 miliard USD, określa siebie jako innowatorów, którzy szybko wdrażają technologię AI. Jednak, aż 16 proc. mniejszych firm (wycenianych poniżej 1 mld USD) również postrzega siebie w ten sposób. Mając na uwadze, że wszystkie organizacje finansowe muszą spełniać te same wymogi regulacyjne, konieczna jest powszechna implementacja technologii, niezależnie od wielkości przedsiębiorstwa.

 

Sprostanie wyzwaniom związanym z COVID-19 oraz zapewnienie skutecznych metod przeciwdziałania procederom prania pieniędzy nie jest możliwe bez wykorzystania zaawansowanych narzędzi analitycznych. Zdaniem uczestników badania przeprowadzonego przez SAS, KPMG i ACAMS, przyczyniają się do tego również:

  • możliwość poprawy jakości badania poszczególnych przypadków i spełnienia wymogów regulacyjnych (40 proc. odpowiedzi);
  • możliwość ograniczenia liczby fałszywych zgłoszeń i związanych z nimi kosztów (38 proc. odpowiedzi).

 

Radykalna zmiana zachowań konsumentów wywołana przez pandemię sprawiła, że wiele organizacji z sektora finansowego dostrzegło wady statycznych, opartych na regułach strategii, które nie gwarantują precyzji i nie zapewniają elastyczności porównywalnej do behawioralnych systemów decyzyjnych. Sztuczna inteligencja i uczenie maszynowe są z natury dynamiczne, inteligentnie dostosowują się do zmian rynkowych i pojawiających się zagrożeń. Ponadto technologie te mogą zostać szybko zintegrowane z działającymi programami compliance. Organizacje, które jako pierwsze wdrożyły rozwiązania AI i ML, dostrzegają znaczący wzrost wydajności, a jednocześnie łatwiej im spełnić rosnące wymogi regulacyjne – mówi David Stewart, Director of Financial Crimes and Compliance w SAS.

 

Pełna wersja raportu SAS, KPMG i ACAMS: „Acceleration through adversity: The state of AI and machine learning adoption in AML compliance”.

 

 

Rdzenie Efficient Cores (Gracemont) zapewniają lepszą wydajność niż sądzono. Najnowsze dane wskazują, że nadchodzący Core i5-12600K przewyższa wydajnością nawet Ryzena 7 5800X.