Data Science – najbardziej wszechstronne działy firm technologicznych, dzisiejsi liderzy cyfrowi coraz częściej wykorzystują Data Science do analizy dużych ilości danych.
Narzędzia Business Intelligence oferują doskonałe możliwości śledzenia kluczowych wskaźników wydajności operacji dla bieżących strategii i modeli biznesowych. Jednak dzisiejsi liderzy cyfrowi coraz częściej wykorzystują Data Science do zaawansowanej analizy dużych ilości danych. Data Science umożliwia przewidywanie nadchodzących wydarzeń, które mogą wpływać na organizację i napędzać rozwój zupełnie nowych modeli biznesowych, wpływając jednocześnie na wyraźną przewagę konkurencyjną. Specjaliści z tej dziedziny obejmują w firmach niezwykle ważne role, ale co za tym idzie – muszą cechować się niezwykłą wszechstronnością.
Data Science odnosi się do wykorzystania metod naukowych, takich jak matematyka, programowanie i informatyka w połączeniu z procesami i systemami technologicznymi w celu wydobycia wiedzy i spostrzeżeń z danych. Za pomocą zaawansowanej analizy możemy zrozumieć, przewidzieć i odpowiedzieć na cyfrowe dane, optymalizując działania w sposób, który w innym przypadku nie byłby możliwy. Jednym z ważnych narzędzi w Data Science jest grupa algorytmów znana jako Machine Learning (uczenie maszynowe, ML). Ideą uczenia maszynowego jest to, że sam algorytm nieustannie uczy się znajdować wzorce i reguły. Jest to konieczne, gdy ilość danych jest tak duża, że zasady i wzorce stają się zbyt skomplikowane, aby ludzki mózg mógł je zinterpretować. Dziś sztuczna inteligencja przybiera formę uczenia maszynowego, co jest możliwe dzięki szerokiej digitalizacji i ogromnej ilości dostępnych danych.
Jednym z ważnych czynników związanych z uczeniem maszynowym jest to, że zwykle wymaga dużych ilości danych, często z historią sięgającą wielu lat. Ta obszerna ilość danych, którą często określa się mianem Big Data. Dane mogą być pozyskiwane wewnętrznie, np. z systemów biznesowych, produkcyjnych lub CRM, lub mogą pochodzić ze źródeł zewnętrznych, takich jak różne strony internetowe i media społecznościowe, czy dane z czujników (np. Internet Rzeczy).
Główna różnica między Business Intelligence (BI) i Data Science (DS.) polega na poziomie inteligencji. Można powiedzieć, że Data Science zaczyna działać tam, gdzie kończy się samoobsługowe BI. Narzędzia BI można na przykład wykorzystać w rozwiązaniu DS do wizualizacji wyników. Jednak w porównaniu z BI, Data Science generalnie zapewnia głębszy wgląd i może zapewnić większą przewagę konkurencyjną. Kolejną istotną różnicą jest to, że Data Science pozwala na proaktywną strategię, ponieważ jej analizy mogą oferować prognozy na przyszłość, podczas gdy Business Intelligence w zasadzie reaguje, prezentując informacje historyczne.
Wiele różnych obszarów zastosowań
– Aby zobrazować, jak bardzo wszechstronne są nasze zespoły, wystarczy opowiedzieć o tym, jakimi obszarami zajmujemy się w organizacji. Dla przykładu, w Capgemini Invent łącząc wiedzę z zakresu strategii, technologii, nauki o danych i kreatywnego projektowania z twórczym podejściem, współpracujemy z naszymi klientami w celu wprowadzania innowacji i przekształcania ich działalności. Ekosystem naszej marki korzysta obecnie z bogatej wiedzy specjalistycznej z zakresu projektowania zorientowanego na człowieka, przełomowych innowacji oraz badań i rozwoju, a także budowania ruchów społecznych, co potwierdza naszą wiodącą rolę w transformacji, inwencji i reinwencji – mówi Marcin Andrzejewski, Head of Capgemini Invent Poland.
Zespoły Data Science mają możliwość pracować z klientami, będąc wsparciem m.in. dla zespołów marketingowych – opierając się na analizie danych dotyczących klientów, są w stanie odpowiedzieć na pytania: kim jest klient, czego dokładnie chce i w jakim czasie, ile jest on wart dla organizacji, jak do niego dotrzeć oraz jaki rodzaj kampanii jest najbardziej opłacalny. Ale relacje z klientem to tylko jeden z przykładów, a tych można mnożyć. Dodatkowo zespoły te prowadzą analizy sprzedaży, prognozy, zautomatyzowane działania sprzedażowe i rekomendacje zakupowe, są w stanie przewidzieć z wyprzedzeniem poziom sprzedaży i zaplanować w odpowiedni sposób, jaką wielkość zamówienia złożyć, aby zaspokoić popyt, bez tworzenia nadmiernych zapasów. Dodatkowo, dzięki analizie danych z czujników, pojedynczo lub w połączeniu z innymi danymi, specjaliści mogą pomóc zoptymalizować i usprawnić działanie maszyn, testów, pojazdów i rozwoju produktów w czasie rzeczywistym. Inne obszary zastosowań obejmują optymalizację produkcji, czy utrzymanie zapasów.
– Obecnie większość firm, nie tylko z sektora usługowego, posiada ogromne aktywa w postaci tekstów. Mogą przybierać formę ankiet, instrukcji, dokumentów prawnych, a nawet mediów społecznościowych i stron internetowych. Analizując tekst na dużą skalę, można znaleźć nowe spostrzeżenia i stworzyć wartość. Capgemini Insights & Data dysponuje zarówno dogłębną wiedzą w tej dziedzinie, jak i inteligentnymi narzędziami, które pozwalają samodzielnie przeprowadzić analizę – dodaje Marcin Andrzejewski.
Proaktywne zarządzanie operacyjne i innowacje możliwe dzięki Data Science to nie tylko dostęp do danych i zaawansowanej technologii. Droga do organizacji opartej na danych jest równie strategicznym posunięciem, gdzie metody działania są nieustannie kwestionowane, a firma musi reagować na podstawie nowych spostrzeżeń. Nie chodzi tu tylko o działania wspierające dotychczasową strategię – ale w równym stopniu o działania zmieniające dotychczasową strategię i model biznesowy. Dane stają się coraz ważniejszym zasobem w działalności biznesowej – dlatego już dziś należy zarządzać nimi w odpowiedni sposób.